PDA

توجه ! این یک نسخه آرشیو شده میباشد و در این حالت شما عکسی را مشاهده نمیکنید برای مشاهده کامل متن و عکسها بر روی لینک مقابل کلیک کنید : نانو



محمد بهبهانی
09-13-2009, 01:08 AM
: تاريخچه فناوري نانو
در طول تاريخ بشر از زمان يونان باستان، مردم و به‌خصوص دانشمندان آن دوره بر اين باور بودند كه مواد را مي‌توان آنقدر به اجزاء كوچك تقسيم كرد تا به ذراتي رسيد كه خردناشدني هستند و اين ذرات بنيان مواد را تشكيل مي‌دهند، شايد بتوان دموكريتوس فيلسوف يوناني را پدر فناوري و علوم نانو دانست چرا که در حدود 400 سال قبل از ميلاد مسيح او اولين كسي بود كه واژة اتم را كه به معني تقسيم‌نشدني در زبان يوناني است براي توصيف ذرات سازنده موادبه كاربرد.
با تحقيقات و آزمايش‌هاي بسيار، دانشمندان تاکنون 108 نوع اتم و تعداد زيادي ايزوتوپ كشف كرده‌اند. آنها همچنين پي برده اند كه اتم‌ها از ذرات كوچكتري مانند كوارك‌ها و لپتون‌ها تشكيل شده‌اند. با اين حال اين كشف‌ها در تاريخ پيدايش اين فناوري پيچيده زياد مهم نيست.

نقطه شروع و توسعه اوليه فناوري نانو به طور دقيق مشخص نيست. شايد بتوان گفت كه اولين نانوتكنولوژيست‌ها شيشه‌گران قرون وسطايي بوده‌اند كه از قالب‌هاي قديمي(Medieal forges) براي شكل‌دادن شيشه‌هايشان استفاده مي‌كرده‌اند. البته اين شيشه‌گران نمي‌دانستند كه چرا با اضافه‌كردن طلا به شيشه رنگ آن تغيير مي‌كند. در آن زمان براي ساخت شيشه‌هاي كليساهاي قرون وسطايي از ذرات نانومتري طلا استفاده مي‌‌شده است و با اين كار شيشه‌هاي رنگي بسيار جذابي بدست مي‌آمده است. اين قبيل شيشه‌ها هم‌اكنون در بين شيشه‌هاي بسيار قديمي يافت مي‌شوند. رنگ به‌وجودآمده در اين شيشه‌ها برپايه اين حقيقت استوار است كه مواد با ابعاد نانو داراي همان خواص مواد با ابعاد ميكرو نمي‌باشند.

در واقع يافتن مثالهايي براي استفاده از نانو ذرات فلزي چندان سخت نيست.رنگدانه‌هاي تزييني جام مشهور ليکرگوس در روم باستان ( قرن چهارم بعد از ميلاد) نمونه‌اي از آنهاست. اين جام هنوز در موزه بريتانيا قرار دارد و بسته به جهت نور تابيده به آن رنگهاي متفاوتي دارد. نور انعکاس يافته از آن سبز است ولي اگر نوري از درون آن بتابد، به رنگ قرمز ديده مي‌شود. آناليز اين شيشه حکايت از وجود مقادير بسيار اندکي از بلورهاي فلزي ريز700 (nm) دارد ، که حاوي نقره و طلا با نسبت مولي تقريبا 14 به 1 است حضور اين نانوبلورها باعث رنگ ويژه جام ليکرگوس گذشته است.

در سال1959 ريچارد فاينمن مقاله‌اي را دربارة قابليت‌هاي فناوري نانو در آينده منتشر ساخت. باوجود موقعيت‌هايي كه توسط بسياري تا آن زمان كسب‌شده بود، ريچارد. پي. فاينمن را به عنوان پايه گذار اين علم مي‌شناسند. فاينمن كه بعدها جايزه نوبل را در فيزيك دريافت كرد درآن سال در يک مهماني شام كه توسط انجمن فيزيک آمريكا برگزار شده بود، سخنراني كرد و ايده فناوري نانو را براي عموم مردم آشكار ساخت.
عنوان سخنراني وي « فضاي زيادي در سطوح پايين وجود دارد » بود.

سخنراني او شامل اين مطلب بود كه مي‌توان تمام دايره‌المعارف بريتانيكا را بر روي يك سنجاق نگارش كرد.يعني ابعاد آن به اندازه25000/1ابعاد واقعيش كوچك مي شود. او همچنين از دوتايي‌كردن اتم‌ها براي كاهش ابعاد كامپيوترها سخن گفت (در آن زمان ابعاد كامپيوترها بسيار بزرگتر از ابعاد كنوني بودند اما او احتمال مي‌داد كه ابعاد آنها را بتوان حتي از ابعاد كامپيوترهاي كنوني نيز كوچكتر كرد. او همچنين در آن سخنراني توسعه بيشتر فناوري نانوراپيش‌بینی نمود.

برخي از رويدادهاي مهم تاريخي در شکل گيري فناوري و علوم نانو

تاريخ رويدادهاي مهم در زمينه فناوري نانو
1857 مايکل فارادي محلول کلوئيدي طلا را کشف کرد
1905 تشريح رفتار محلول‌هاي کلوئيدي توسط آلبرت انيشتين
1932 ايجاد لايه‌هاي اتمي به ضخامت يک مولکول توسط لنگموير (Langmuir)
1959 فاينمن ايده " فضاي زياد در سطوح پايين " را براي کار با مواد در مقياس نانو مطرح کرد
1974 براي اولين بار واژه فناوري نانو توسط نوريو تانيگوچي بر زبانها جاري شد
1981 IBM دستگاهي اختراع کرد که به کمک آن مي‌توان اتم‌ها را تک تک جا‌به‌جا کرد.
1985 کشف ساختار جديدي از کربن C60
1990 شرکت IBM توانايي کنترل نحوه قرارگيري اتم‌ها را نمايش گذاشت
1991 کشف نانو لوله‌هاي کربني
1993 توليد اولين نقاط کوانتومي با کيفيت بالا
1997 ساخت اولين نانو ترانزيستور
2000 ساخت اولين موتور DNA
2001 ساخت يک مدل آزمايشگاهي سلول سوخت با استفاده از نانو لوله
2002 شلوارهاي ضدلك به بازار آمد
2003 توليد نمونه‌هاي آزمايشگاهي نانوسلول‌هاي خورشيدي
2004 تحقيق و توسعه براي پيشرفت در عرصه فناوري‌نانو ادامه دارد

محمد بهبهانی
09-13-2009, 01:10 AM
كامپيوترها اطلاعات را تقريبا" بدون صرف هيچ هزينه‌ اي باز توليد مي‌نمايند. اقداماتي در دست اجراست تا دستگاههايي ساخته شوند كه تقريبا" بدون هزينه - شبيه عمل بيت ها در كامپيوتر - اتمها را به صورت مجزا بهم اضافه كنند ( كنار هم قرار دهند). اين امر ساختن اتوماتيك محصولات را بدون نيروي كار سنتي همانند عمل كپي در ماشين هاي زيراكس ميسر مي كند. صنعت الكترونيك با روند كوچك سازي احياء مي گردد وكار در ابعاد كوچكتر منجر به ساخت ابزاري ميشود كه قادر به دستكاري اتم‌هاي منفرد مثل پروتئين ها در سيب زميني و همانندسازي اتمهاي خاك، هوا و آب از خودشان مي گردد.

پيوند علم مواد ، شيمي و علوم مهندسي كه نانوتكنولوژي ناميده ميشود عرصه اي را بوجود مي آورد كه ماشين آلات خود تكثيركننده و محصولات خود اسمبل از اتمهاي اوليه ارزان ساخته شوند.

نانوتكنولوژي توليد مولكولي يا به زبان ساده‌تر ، ساخت اشياء اتم به اتم، مولكول به مولكول توسط بازوهاي روبات برنامه‌ريزي شده در مقياس نانومتريك است و نانومتر يك ميلياردم متر است ( پهناي معادل با 3 تا 4 اتم). نانوتكنولوژي ساخت ابزارهاي نوين مولكولي منحصر به فرد با بكارگيري خواص شيميايي كاملا" شناخته ‌شده اتمها و مولكولها ( نحوه پيوند آنها به يكديگر) را ارائه مي‌دهد. مهارت مطرحه در اين تكنولوژي دستكاري اتمها بطور جداگانه و جاي دادن دقيق آنان در مكاني است كه براي رسيدن به ساختار دلخواه و ايده‌آل مورد نياز مي ‌باشد. اين قابليت تقريبا" حاصل شده است.

بازده پيش‌بيني شده از تسلط بر اين تكنولوژي بسيار فراتر از موفقيتهايي است كه تاكنون انسان بدانها نائل شده است.

قابليتهاي محتمل تكنيكي نانوتكنولوژي عبارتند از :

1- محصولات خوداسمبل
2- كامپيوترهايي با سرعت ميلياردها برابر كامپيوترهاي امروزي
3- اختراعات بسيار جديد ( كه امروزه ناممكن است)
4- سفرهاي فضايي امن و مقرون به صرفه
5- نانوتكنولوژي پزشكي كه درواقع باعث ختم تقريبي بيماريها، سالخوردگي و مرگ و مير خواهد شد.
6- دستيابي به تحصيلات عالي براي همه بچه‌هاي دنيا
7- احياي مجدد بسياري از حيوانات و گياهان منقرض‌شده
8- احياء و سازماندهي اراضي

دكترDrexler در همايش جهاني نظام علمي در زمينه نانوتكنولوژي اظهار كرده است:
“در جهان اطلاعات ، تكنولوژيهاي ديجيتالي كپي‌برداري را سريع، ارزان، كامل و عاري از هزينه‌بري يا پيچيدگي محتوايي نموده‌اند. حال اگر همين وضعيت در جهان ماده اتفاق بيافتد چه مي‌شود. هزينه توليد يك تن ‌تري بيت تراشه‌هاي RAM تقريبا" معادل با هزينه بري ناشي از توليد همان مقدار فولاد مي‌شود”.

دكترSmalley رئيس هيئت تحقيقاتي دانشگاه رايس و كاشف Buckyballs مي‌گويد:
" نانوتكنولوژي روند زيانبار ناشي از انقلاب صنعتي را معكوس خواهد كرد".

در مقدمه مقاله نانوتكنولوژي كه توسط آقايان Peterson و Pergamit در سال 1993 نگاشته شده چنين آمده است :
" تصور كنيد قادريد با نوشيدن دارو كه در آب ميوه مورد علاقه‌تان حل شده است سرطان را معالجه كنيد . يك ابر كامپيوتر را كه به اندازه يك سلول انسان است در نظر بگيريد. يك سفينه فضايي 4 نفره كه به دور مدار زمين مي‌گردد با هزينه‌اي در حدود يك خودروي خانوادگي تجسم كنيد" .

موارد فوق، فقط تعداد محدودي از محصولات انتظار رفته از نانوتكنولوژي هستند. انسان در معرض يك انقلاب اجتماعي تسريع شده و قدرتمند است كه ناشي از علم نانوتكنولوژي است. در آينده نزديك گروهي از دانشمندان قادر به ساخت اولين آدم آهني با مقياس نانومتري مي‌گردند كه قادر به همانندسازي است. طي چند سال با توليد پنج ميليارد تريليون نانوروبات ، تقريبا" تمامي فرايندهاي صنعتي و نيروي كار كنوني از رده خارج خواهند شد. كالاهاي مصرفي به وفور يافت‌شده ، ارزان، شيك و با دوام خواهند شد. دارو يك جهش سريع و كوانتومي را به جلو تجربه خواهد نمود. سفرهاي فضايي و همانندسازي امن و مقرون به صرفه خواهند شد. به اين دلايل و دلائلي ديگر، سبكهاي زندگي روزمره در جهان بطور زيربنايي متحول خواهد شد و الگوي رفتاري انسانها تحت‌الشعاع اين روند قرار خواهد گرفت

محمد بهبهانی
09-13-2009, 01:11 AM
نانوتكنولوژي چيست؟
نانوتكنولوژي توليد كارآمد مواد و دستگاهها و سيستمها با كنترل ماده در مقياس طولي نانومتر، و بهره برداري از خواص و پديده هاي نوظهوري است كه در مقياس نانو توسعه يافته اند.

يك نانومتر چقدر است؟
يك نانومتر يك ميلياردم متر (9-m 10) است. اين مقدار حدوداً چهار برابر قطر يك اتم است. مكعبي با ابعاد 5/2 نانومتر ممكن است حدود 1000 اتم را شامل شود. كوچكترين IC هاي امروزي با ابعادي در حدود 250 نانومتر در هر لايه به ارتفاع يك اتم، حدود يك ميليون اتم را در بردارند. در مقايسه يك جسم نانومتري با اندازه اي حدود 10 نانومتر، هزار برابر كوچكتر از قطر يك موي انسان است.

امكان مهندسي در مقياس مولكولي براي اولين بار توسط ريچارد فاينمن (R.Feynnman)، برنده جايزه نوبل فيزيك، مطرح شد. فين من طي يك سخنراني در انستيتو تكنولوژي كاليفرنيا در سال 1959 اشاره كرد كه اصول و مباني فيزيك امكان ساخت اتم به اتم چيز ها را رد نمي كند. وي اظهار داشت كه مي توان با استفاده از ماشين هاي كوچك ماشين هايي به مراتب كوچك تر ساخت و سپس اين كاهش ابعاد را تا سطح خود اتم ادامه داد. همين عبارت هاي افسانه وار فاينمن من راهگشاي يكي از جذاب ترين زمينه هاي نانو تكنولوژي يعني ساخت روبوت هايي در مقياس نانو شد. در واقع تصور در اختيار داشتن لشكري از نانوماشين هايي در ابعاد ميكروب كه هر كدام تحت فرمان يك پردازنده مركزي هستند ، هر دانشمندي را به وجد مي آورد. در روياي دانشمنداني مثل جي استورس هال (J.Storrs Hall) و اريك دركسلر (E.Drexler) اين روبوت ها يا ماشين هاي مونتاژكن كوچك تحت فرمان پردازنده مركزي به هر شكل دلخواهي درمي آيند. شايد در آينده اي نه چندان دور بتوانيد به كمك اجراي برنامه اي در كامپيوتر، تختخوابتان را تبديل به اتومبيل كنيد و با آن به محل كارتان برويد.

چرا اين مقياس طول اينقدر مهم است؟
خواص موجي شكل (مكانيك كوآنتمي) الكترونهاي داخل ماده و اثر متقابل اتمها با يكديگر از جابجايي مواد در مقياس نانومتر اثر مي پذيرند. با توليد ساختارهايي در مقياس نانومتر، امكان كنترل خواص ذاتي مواد ازجمله دماي ذوب، خواص مغناطيسي، ظرفيت بار و حتي رنگ مواد بدون تغيير در تركيب شيميايي بوجود مي آيد. استفاده از اين پتانسيل به محصولات و تكنولوژيهاي جديدي با كارايي بالا منتهي مي شود كه پيش از اين ميسر نبود. نظام سيستماتيك ماده در مقياس نانومتري، كليدي براي سيستمهاي بيولوژيكي است. نانوتكنولوژي به ما اجازه مي دهد تا اجزاء و تركيبات را داخل سلولها قرارداده و مواد جديدي را با استفاده از روشهاي جديد خود_اسمبلي بسازيم. در روش خود_اسمبلي به هيچ روبات يا ابزار ديگري براي سرهم كردن اجزاء نيازي نيست. اين تركيب پرقدرت علم مواد و بيوتكنولوژي به فرايندها و صنايع جديدي منتهي خواهد شد.

ساختارهايي در مقياس نانو مانند نانوذرات و نانولايه ها داراي نسبت سطح به حجم بالايي هستند كه آنها را براي استفاده در مواد كامپوزيت، واكنشهاي شيميايي، تهيه دارو و ذخيرة انرژي ايده ال مي سازد. سراميك هاي نانوساختاري غالباً سخت تر و غيرشكننده تر از مشابه مقياس ميكروني خود هستند. كاتاليزورهاي مقياس نانو راندمان واكنشهاي شيميايي و احتراق را افزايش داده و به ميزان چشمگيري از مواد زائد و آلودگي آن كم مي كنند. وسايل الكترونيكي جديد، مدارهاي كوچكتر و سريعتر و … با مصرف خيلي كمتر مي توانند با كنترل واكنش ها در نانوساختار بطور همزمان بدست آيند. اينها تنها اندكي از فوايد و مزاياي تهيه مواد در مقياس نانومتر است.

منافع نانوتكنولوژي چيست؟
مفهوم جديد نانوتكنولوژي آنقدر گسترده و ناشناخته است كه ممكن است روي علم و تكنولوژي در مسيرهاي غيرقابل پيش بيني تأثير بگذارد. محصولات موجود نانوتكنولوژي عبارتند از: لاستيكهاي مقاوم در برابر سايش كه از تركيب ذرات خاك رس با پليمرها بدست آمده اند، شيشه هايي كه خودبخود تميز ميشوند, مواد دارويي كه در مقياس نانو ذرات درست شده اند، ذرات مغناطيسي باهوش براي پمپهاي مكنده و روان سازها, هد ديسكهاي ليزري و مغناطيسي كه با كنترل دقيق ضخامت لايه ها از كيفيت بالاتري برخوردارند، چاپگرهاي عالي با استفاده از نانو ذرات با بهترين خواص جوهر و رنگ دانه و …

قابليتهاي محتمل تكنيكي نانوتكنولوژي عبارتند از :

1- محصولات خوداسمبل
2- كامپيوترهايي با سرعت ميلياردها برابر كامپيوترهاي امروزي
3- اختراعات بسيار جديد ( كه امروزه ناممكن است)
4- سفرهاي فضايي امن و مقرون به صرفه
5- نانوتكنولوژي پزشكي كه درواقع باعث ختم تقريبي بيماريها، سالخوردگي و مرگ و مير خواهد شد.
6- دستيابي به تحصيلات عالي براي همه بچه‌هاي دنيا
7- احياء و سازماندهي اراضي
8- ...

محمد بهبهانی
09-13-2009, 01:12 AM
در سال 1966 فيلمی تخيلی با عنوان «سفر دريايی شگفت انگيز» اهالی سينما را به ديدن نمايشی جسورانه از كاربرد نانوتكنولوژی در پزشكی ميهمان كرد. گروهی از پزشكان جسور و زيردريايی پيشرفته شان با شيوه ای اسرارآميز به قدری كوچك شدند كه می توانستند در جريان خون بيمار سير كنند و لخته خونی را در مغزش از بين ببرند كه زندگی او را تهديد می كرد. با گذشت 36 سال از آن زمان، برای ساختن وسايل پيچيده حتی در مقياس های كوچك تر گام های بلندی برداشته شده است. اين امر باعث شده برخی افراد باور كنند كه چنين دخالت هايی در پزشكی امكان پذير است و روبات های بسيار ريز قادر خواهند بود در رگ های هر كسی سفر كنند.

همه جانداران از سلول های ريزی تشكيل شده اند كه خود آنها نيز از واحدهای ساختمانی كوچك تر در حد نانومتر (يك ميلياردم متر) نظير پروتئين ها، ليپيدها و اسيدهای نوكلئيك تشكيل شده اند. از اين رو، شايد بتوان گفت كه نانوتكنولوژی به نحوی در عرصه های مختلف زيست شناسی حضور دارد. اما اصطلاح قراردادی «نانوتكنولوژی» به طور معمول برای تركيبات مصنوعی استفاده می شود كه از نيمه رساناها، فلزات، پلاستيك ها يا شيشه ساخته شده اند. نانوتكنولوژی از ساختارهايی غيرآلی بهره می گيرد كه از بلورهای بسيار ريزی در حد نانومتر تشكيل شده اند و كاربردهای وسيعی در زمينه تحقيقات پزشكی، رساندن داروها به سلول ها، تشخيص بيماری ها و شايد هم درمان آنها پيدا كرده اند.

در برخی محافل نگرانی های شديدی در مورد جنبه منفی اين فناوری به وجود آمده است؛ آيا اين نانوماشين ها نمی توانند از كنترل خارج شده و كل جهان زنده را نابود كنند؟

با وجود اين به نظر می رسد فوايد اين فناوری بيش از آن چيزی باشد كه تصور می رود. برای مثال، می توان با بهره گيری از نانوتكنولوژی وسايل آزمايشگاهی جديدی ساخت و از آنها در كشف داروهای جديد و تشخيص ژن های فعال تحت شرايط گوناگون در سلول ها، استفاده كرد. به علاوه، نانوابزارها می توانند در تشخيص سريع بيماری ها و نقص های ژنتيكی نقش ايفا كنند.

طبيعت نمونه زيبايی از سودمندی بلورهای غيرآلی را در دنيای جانداران ارائه می كند. باكتری های مغناطيسی، جاندارانی هستند كه تحت تاثير ميدان مغناطيسی زمين قرار می گيرند. اين باكتری ها فقط در عمق خاصی از آب يا گل ولای كف آن رشد می كنند. اكسيژن در بالای اين عمق بيش از حد مورد نياز و در پايين آن بيش از حد كم است. باكتری ای كه از اين سطح خارج می شود بايد توانايی شنا كردن و برگشت به اين سطح را داشته باشد. از اين رو، اين باكتری ها مانند بسياری از خويشاوندان خود برای جابه جا شدن از يك دم شلاق مانند استفاده می كنند. درون اين باكتری ها زنجيره ای با حدود 20 بلور مغناطيسی وجود دارد كه هر كدام بين 35 تا 120 نانومتر قطر دارند. اين بلورها در مجموع يك قطب نمای كوچك را تشكيل می دهند. يك باكتری مغناطيسی می تواند در امتداد ميدان مغناطيسی زمين قرار گيرد و مطابق با آن بالا يا پايين برود تا مقصد مورد نظرش را پيدا كند.

اين قطب نما اعجاز مهندسی طبيعت در مقياس نانو است. اندازه بلورها نيز مهم است. هر چه ذره مغناطيسی بزرگ تر باشد، خاصيت مغناطيسی اش مدت بيشتری حفظ می شود. اما اگر اين ذره بيش از حد بزرگ شود خود به خود به دو بخش مغناطيسی مجزا تقسيم می شود كه خاصيت مغناطيسی آنها در جهت عكس يكديگرند. چنين بلوری خاصيت مغناطيسی كمی دارد و نمی تواند عقربه كارآمدی برای قطب نما باشد. باكتری های مغناطيسی قطب نماهای خود را فقط از بلورهايی با اندازه مناسب می سازند تا از آنها برای بقای خود استفاده كنند. جالب است كه وقتی انسان برای ذخيره اطلاعات روی ديسك سخت محيط هايی را طراحی می كند دقيقا از اين راهكار باكتری ها پيروی می كند و از بلورهای مغناطيسی در حد نانو و با اندازه ای مناسب استفاده می كند تا هم پايدار باشند و هم كارآمد.

محققان در تلاش هستند تا از ذرات مغناطيسی در مقياس نانو برای تشخيص عوامل بيماری زا استفاده كنند. روش اين محققان نيز مانند بسياری از مهارت هايی كه امروزه به كار می رود به آنتی بادی های مناسبی نياز دارد كه به اين عوامل متصل می شوند. ذرات مغناطيسی مانند برچسب به مولكول های آنتی بادی متصل می شوند. اگر در يك نمونه، عامل بيماری زای خاصی مانند ويروس مولد ايدز مد نظر باشد، آنتی بادی های ويژه اين ويروس كه خود به ذرات مغناطيسی متصل هستند به آنها می چسبند. برای جدا كردن آنتی بادی های متصل نشده، نمونه را شست وشو می دهند. اگر ويروس ايدز در نمونه وجود داشته باشد، ذرات مغناطيسی آنتی بادی های متصل شده به ويروس، ميدان های مغناطيسی توليد می كنند كه توسط دستگاه حساسی تشخيص داده می شود. حساسيت اين مهارت آزمايشگاهی از روش های استاندارد موجود بهتر است و به زودی اصلاحات پيش بينی شده، حساسيت را تا چند صد برابر تقويت خواهد كرد.

دنيای پيشرفته الكترونيك پر از مواد پخش كننده نور است. برای نمونه هر CDخوان، CD را با استفاده از نوری می خواند كه از يك ديود ليزری می آيد. اين ديود از يك نيمه رسانای غيرآلی ساخته شده است. هر تصوير، قسمت كوچكی از يك CD به اندازه يك مولكول پروتئين (در حد نانومتر) را می كند. در نتيجه اين عمل يك نانو بلور نيمه رسانا يا به اصطلاح تجاری يك «نقطه كوانتومی» ايجاد می شود.

فيزيكدانانی كه برای اولين بار در دهه 1970 نقاط كوانتومی را مطالعه می كردند معتقد بودند كه اين نقاط در ساخت وسايل الكترونيكی جديد و وسايل ديد استفاده خواهند شد. تعداد انگشت شماری از اين محققان ابراز می كردند كه از اين يافته ها می توان برای تشخيص بيماری يا كشف داروهای جديد كمك گرفت و هيچ كدام از آنان حتی در خواب هم نمی ديدند كه اولين كاربردهای نقاط كوانتومی در زيست شناسی و پزشكی باشد.

نقاط كوانتومی قابليت های زيادی دارند و در موارد مختلفی مورد استفاده قرار می گيرند. يكی از كاربردهای اين نقاط نيمه رسانا در تشخيص تركيبات ژنتيكی نمونه های زيستی است. اخيرا برخی محققان روش مبتكرانه ای را به كار بردند تا وجود يك توالی ژنتيكی خاص را در يك نمونه تشخيص دهند. آنان در طرح خود از ذرات طلای 13 نانومتری استفاده كردند كه با DNA(ماده ژنتيكی) تزئين شده بود. اين محققان در روش ابتكاری خود از دو دسته ذره طلا استفاده كردند. يك دسته، حامل DNA بود كه به نصف توالی هدف متصل می شد و DNA متصل به دسته ديگر به نصف ديگر آن متصل می شد. DNA هدفی كه توالی آن كامل باشد به راحتی به هر دو نوع ذره متصل می شود و به اين ترتيب دو ذره به يكديگر مربوط می شوند. از آنجا كه به هر ذره چندين DNA متصل است، ذرات حامل DNA هدف می توانند چندين ذره را به يكديگر بچسبانند. وقتی اين ذرات طلا تجمع می يابند خصوصياتی كه باعث تشخيص آنها می شود به مقدار چشم گيری تغيير می كند و رنگ نمونه از قرمز به آبی تبديل می شود. چون كه نتيجه اين آزمايش بدون هيچ وسيله ای قابل مشاهده است می توان آن را برای آزمايش DNA در خانه نيز به كار برد.

هيچ بحثی از نانوتكنولوژی بدون توجه به يكی از ظريف ترين وسايل در علوم امروزی يعنی ميكروسكوپ اتمی كامل نمی شود. روش اين وسيله برای جست وجوی مواد مانند گرامافون است. گرامافون، سوزن نوك تيزی دارد كه با كشيده شدن آن روی يك صفحه، شيارهای روی آن خوانده می شود. سوزن ميكروسكوپ اتمی بسيار ظريف تر از سوزن گرامافون است به نحوی كه می تواند ساختارهای بسيار كوچك تر را حس كند. متاسفانه، ساختن سوزن هايی كه هم ظريف باشند و هم محكم، بسيار مشكل است. محققان با استفاده از نانو لوله های باريك از جنس كربن كه به نوك ميكروسكوپ متصل می شود اين مشكل را حل كردند. با اين كار امكان رديابی نمونه هايی با اندازه فقط چند نانومتر فراهم شد. به اين ترتيب، برای كشف مولكول های زنده پيچيده و برهم كنش هايشان وسيله ای با قدرت تفكيك بسيار بالا در اختيار محققان قرار گرفت.

اين مثال و مثال های قبل نشان می دهند كه ارتباط بين نانوتكنولوژی و پزشكی اغلب غيرمستقيم است به نحوی كه بسياری از كارهای انجام شده، در زمينه ساخت يا بهبود ابزارهای تحقيقاتی يا كمك به كارهای تشخيصی است.

در برخی موارد، نانوتكنولوژی می تواند در درمان بيماری ها نيز مفيد باشد. برای مثال می توان داروها را درون بسته هايی در حد نانومتر قرار داد و آزاد شدن آنها را با روش های پيچيده تحت كنترل در آورد. يكی از نانوساختارهايی كه برای ارسال دارو يا مولكول هايی مانند DNA به بافت های هدف ساخته شده، «دندريمر»ها هستند. اين مولكول های آلی مصنوعی با ساختارهای پيچيده برای اولين بار توسط «دونالد توماليا» ساخته شدند. اگر شاخه های درختی را در يك توپ اسفنجی فرو ببريد به نحوی كه در جهت های مختلف قرار گيرند می توان شكلی شبيه يك مولكول دندريمر را ايجاد كرد. دندريمرها مولكول هايی كروی و شاخه شاخه هستند كه اندازه ای در حدود يك مولكول پروتئين دارند. دندريمرها مانند درختان پرشاخه و برگ دارای فضاهای خالی هستند، يعنی تعداد زيادی حفرات سطحی دارند.

دندريمرها را می توان طوری ساخت كه فضاهايی با اندازه های مختلف داشته باشند. اين فضاها فقط برای نگه داشتن عوامل درمانی هستند. دندريمرها بسيار انعطاف پذير و قابل تنظيم اند. همچنين آنها را می توان طوری ساخت كه فقط در حضور مولكول های محرك مناسب، خود به خود باد كنند و محتويات خود را بيرون بريزند. اين قابليت اجازه می دهد تا دندريمرهای اختصاصی بسازيم تا بار دارويی خود را فقط در بافت ها يا اندام هايی آزاد كنند كه نياز به درمان دارند. دندريمرها می توانند برای انتقال DNA به سلول ها جهت ژن درمانی نيز ساخته شوند. اين شيوه نسبت به روش اصلی ژن درمانی يعنی استفاده از ويروس های تغيير ژنتيكی يافته بسيار ايمن تر هستند.

همچنين محققان ذراتی به نام نانوپوسته ساخته اند كه از جنس شيشه پوشيده شده با طلا هستند. اين نانوپوسته ها می توانند به صورتی ساخته شوند تا طول موج خاصی را جذب كنند. اما از آنجا كه طول موج های مادون قرمز به راحتی تا چند سانتی متر از بافت نفوذ می كنند، نانوپوسته هايی كه انرژی نورانی را در نزديكی اين طول موج جذب می كنند بسيار مورد توجه قرار گرفته اند. بنابراين، نانوپوسته هايی كه به بدن تزريق می شوند می توانند از بيرون با استفاده از منبع مادون قرمز قوی گرما داده شوند. چنين نانوپوسته هايی را می توان به كپسول هايی از جنس پليمر حساس به گرما متصل كرد. اين كپسول ها محتويات خود را فقط زمانی آزاد می كنند كه گرمای نانوپوسته متصل به آن باعث تغيير شكلش شود.

يكی از كاربردهای شگرف اين نانوپوسته ها در درمان سرطان است. می توان نانوپوسته های پوشيده شده با طلا را به آنتی بادی هايی متصل كرد كه به طور اختصاصی به سلول های سرطانی متصل می شوند. از لحاظ نظری اگر نانوپوسته ها به مقدار كافی گرم شوند می توانند فقط سلول های سرطانی را از بين ببرند و به بافت های سالم آسيب نرسانند. البته مشكل است بدانيم آيا نانوپوسته ها در نهايت به تعهد خود عمل می كنند يا نه. اين موضوع برای هزاران وسيله ريز ديگری نيز مطرح است كه برای كاربرد در پزشكی ساخته شده اند. محققان از نانوتكنولوژی در ساخت پايه های مصنوعی برای ايجاد بافت ها و اندام های مختلف نيز استفاده كرده اند. محققی به نام «ساموئل استوپ» روش نوينی ابداع كرده است كه در آن سلول های استخوانی را روی يك پايه مصنوعی رشد می دهد. اين محقق از مولكول های مصنوعی استفاده كرده است كه با رشته هايی تركيب می شوند كه اين رشته ها برای چسباندن به سلول های استخوانی تمايل بالايی دارند. اين پايه های مصنوعی می توانند فعاليت سلول ها را هدايت كنند و حتی می توانند رشد آنها را كنترل كنند. محققان اميدوارند سرانجام بتوانند روش هايی بيابند تا نه فقط استخوان، غضروف و پوست بلكه اندام های پيچيده تر را با استفاده از پايه های مصنوعی بازسازی كنند.

به نظر می رسد برخی از اهدافی كه امروزه در حال تحقق هستند در آينده ای نزديك توسط پزشكان به كار گرفته شوند. جايگزينی قلب، كليه يا كبد با استفاده از پايه های مصنوعی شايد با فناوری كه در فيلم سفر دريايی شگفت انگيز نشان داده شد، متناسب نباشد اما اين تصور كه چنين درمان هايی در آينده ای نه چندان دور به واقعيت بپيوندند بسيار هيجان انگيز است. حتی هيجان انگيزتر اينكه اميد است محققان بتوانند با تقليد از فرآيندهای طبيعی زيست شناختی، واحدهايی در مقياس نانو توليد كنند و از آنها در ساخت ساختارهای بزرگ تر بهره گيرند. چنين ساختارهايی در نهايت می توانند برای ترميم بافت های آسيب ديده و درمان بسياری از بيماری ها به كار روند.

محمد بهبهانی
09-13-2009, 01:13 AM
نانوتكنولوژي به عنوان يك فناوري قدرتمند نوين، توانايي ايجاد انقلاب و تحولات عظيم را در سيستم تامين مواد غذايي و كشاورزي ايالت متحده آمريكا و در گستره جهاني دارد. نانوتكنولوژي قادر است كه ابزارهاي جديدي را براي استفاده در بيولوژي مولكولي و سلولي و همچنين توليد مواد جديدي، براي شناسايي اجرام بيماري زا معرفي نمايد و بنابراين چندين ديدگاه مختلف در نانوتكنولوژي وجود دارد كه مي تواند در علوم كشاورزي و صنايع غذايي، كاربرد داشته باشد. به عنوان مثال امنيت زيستي توليدات كشاورزي و مواد غذايي، سيستمهاي آزاد كننده دارو بر عليه بيماريهاي شايع، حفظ سلامتي و حمايت از محيط زيست از جمله كاربردهاي اين علم مي باشد.

علم نانوتكنولوژي چيست؟
انجمن ملي نوبنياد نانوتكنولوژي كه يك نهاد دولتي در كشور امريكا مي باشد ، واژه نانوتكنولوژي را چنين توصيف مي كند: "تحقيق و توسعه هدفمند، براي درك و دستكاري و اندازه گيريها مورد نياز در سطح موادي با ابعاد در حد اتم"، مولكول و سوپرمولكولها را نانوتكنولوژي مي گويند. اين مفهوم با واحدهايي از يك تا صد نانومتر، همبستگي دارد. دراين مقياس خصوصيات فيزيكي، بيولوژيكي و شيميايي مواد تفاوت اساسي با يكديگر دارند و غالبا اعمال غير قابل انتظار از آنها مشاهده مي شود. در سيستم كشاورزي امروزي، اگردامي مبتلا به يك بيماري خاص شود، مي توان چند روز و حتي چند هفته يا چند ماه قبل علائم نامحسوس بيماري را شناسايي كنند و قبل از انتشار و مرگ و مير كل گله، دامدار را براي اخذ تصميمات مديريتي و پيشگيري كننده آگاه كند و بنابراين مي توان نسبت به مقابله با آن بيماري اقدام نمايد. نانوتكنولوژي به موضوعاتي در مقياس هم اندازه با ويروسها و ساير عوامل بيماري زا مي پردازد و بنابراين پتانسيل بالايي را براي شناسايي و ريشه كني عوامل بيماري زا دارد. نانوتكنولوژي امكان استفاده از سيستمهاي آزاد كننده داروئي را كه بتواند به طور طولاني مدت فعال باقي بماند، فراهم مي كند. طراحي سيستمهاي آزاد كننده مواد دارويي، يك آرزوي و روياي هميشگي محققان براي سيستمهاي رها كننده داروها، مواد مغذي و پروبيوتيكها بوده و مي باشد.

نانوتكنولوژي به عنوان يك فناوري قدرتمند به ما اجازه مي دهد كه نگرشي در سطح مولكولي و اتمي داشته و قادر باشيم كه ساختارهايي در ابعاد نانومتر را بيافرينيم.
براي تعيين و شناسايي بسيار جزئي آلودگيهاي شيميايي، ويروسي يا باكتريايي در كشاورزي و صنايع غذايي معمولا از روشهاي بيولوژيكي، فيزيكي و شيميايي استفاده مي گيرد. در روشهاي اخير نانوتكنولوژي براي استفاده توام اين روشها، يك سنسور در مقياس نانو طراحي كرده اند در اين سيستم جديد، مواد حاصل از متابوليسم و رشد باكتريها با اين سنسورها تعيين مي گردد.

سطوح انتخابي بيولوژيكي، محيطي هايي هستند كه عمده واكنشهاي و فعل و انفعالات بيولوژيكي و شيميايي در آن محيط انجام مي شود. چنين سطوحي همچنين توانايي افزايش يا كاهش قدرت اتصال ارگانيزمها و ملكولهاي ويژه را دارد. از جنبه هاي كاريردي استفاده از اين سطوح، طراحي سنسورها، كاتاليستها، و توانايي جداسازي يا خالص سازي مخلوطهاي بيومولكولها مي باشد. نانومولكولها موادي هستند كه اخيرا از طريق نانوتكنولوژي به دست آمده اند و يا در طبيعت موجودند و بوسيله اين ساختارها، امكان دستكاريهاي درسطح نانو و تنظيم و كاتاليز واكنشهاي شيميايي وجود دارد. نانو مواد از اجزاي با سايز بسيار ريز تشكيل شده اند و اجزا تشكيل دهنده چنين ساختارهايي بر خواص مواد حاصل در سطح ماكرو تاثير مي گذارد. ساختارهاي كروي توخالي (buckey balls ) كه با نام ديگر فلورن هم شناخته شده اند، مجموعه از اتمهاي كربن متحدالشكل به صورت كروي هستند كه در چنين ساختاري هر اتم كربن به سه اتم كربن مجاورش متصل شده. دانشمندان اكنون به خوبي مي دانند كه چگونه يك چنين ساختاري را به وجود آورند و كاربردهاي بيولوژيكي آن امروزه كاملا شناخته شده است. از جمله كاربردهاي چنين ساختارهايي براي رها سازي دارو يا مواد راديواكتيو در محلهاي مبتلا به عوامل بيماريزا مي باشد.

ايده استفاده از60 اتم كربن به جاي 80 اتم، ساختارهاي توخالي را براي آزاد سازي دارو فراهم مي كند. هدف از اين كار در نهايت رسيدن به گروهاي قابل انحلال پپتيدها در آب مي باشد كه نتيجتا اين مولكولها به جريان خون راه پيدا مي كنند.
نانوتيوپها ساختارهاي توخالي ديگري هستند كه از دو طرف باز شده اند و گروههاي اتمي ديگري به آنها اضافه شده اند و يك ساختار شش گوشه را تشكيل مي دهند. نانوتيوپها مي توانند به عنوان يك ورقه گرافيت در نظر گرفته شوند كه به دور يك لوله پيچيده شده اند.

كاربرد پلي مرهاي سنتزي در داروسازي پيشرفتهاي چشمگيري داشته است. سبكي، نداشتن آثار جانبي و امكان شكل دهي پلي مرها، كاربرد آنها را در زمينه پزشكي و دامپزشكي افزايش داده است. در روشهاي دارورساني مدرن، فرآورده شكل دارويي موثر خود را با يك روند مشخص شده قبلي براي مدت زمان معلوم بطور سيستماتيك به عضو هدف آزاد مي كند. پليمرها نه تنها به عنوان منابع ذخيره دارو و غشا و ماتريكس هاي نگهدارنده عمل مي كنند بلكه مي توانند سرعت انحلال آزاد سازي و تعادل دفع و جذب آزاد را در بدن كنترل كنند.
دندريمر(پلي مر) يك طبقه جديد از مولكولهاي سه بعدي مصنوعي هستند كه از مسير و راه نانوسنتزي به دست آمده اند كه اين دندريمرها از تواليها و شاخه اي تكراري حاصل آمده اند. ساختار چنين تركبيباتي از يك درجه بالاي تقارن برخوردار است.

نقاط كوانتومي، كريستالهايي در مقياس نانومتري هستند كه اساسا در اواسط 1980 براي كاربردهاي اپتوالكترونيك به كاربرده شدند. آنها در طي سنتز شيميايي در مقياس نانو ايجاد مي شوند و از صدها يا هزاران اتم در نهايت يك ماده نيمه هادي معدني تشكيل شده اند كه اين ماده به اتمها خاصيت فلورنس مي دهد. وقتي يك نقطه كوانتومي با يك پرتو نور برانگيخته مي شود آنها دوباره نور را منتشر مي كنند. ميزان يك طيف نشري متقارن باريك مستقيم به اندازه كريستال بستگي دارد. اين بدان معني است كه اجرام كوانتومي مي توانند به خوبي براي انتشار نور در طول موجهاي مختلف طراحي شوند.
نانوشلها يك نوع جديد از نانوذرات هستند كه از هسته دي الكتريك مانند سيليكا تشكيل شده اند كه با يك لايه فلزي فوق العاده نازك(به عنوان مثال طلا) پوشش داده شده اند. نانوشلهاي طلا، داراي خواص فيزيكي مشابه به آنهايي هستند كه از كلوئيدها طلا ساخته شده اند. پاسخهاي نوري نانوشلهاي طلا به طور قابل توجهي به اندازه نسبي هسته نانوذرات و ضخامت لايه طلا بستگي دارد. دانشمندان قادرند نانوشلهايي را بسازند كه ملكولهاي آنتي ژنها بر روي آنها سوار شوند و در مجموع سلولهاي سرطاني و تومورهاي موجود را تحت تاثير قرار دهند. اين ويژگي مخصوصا در رابطه با نانوشلها مي باشد كه اين ساختارها قادرند فقط تومورهاي موجود را تحت تاثير قرار دهند و سلولهاي مجاور تومور دست نخورده باقي مي ماند. از طريق حرارتي كه به طور انتخابي در سلولهاي توموري ايجاد مي كند منجر به از بين بردن اين سلولها مي شود

محمد بهبهانی
09-13-2009, 01:14 AM
دارورساني: استفاده از نانوذرات براي جذب از راه پوست و چشمها (خيلي لذت بخش‌تر از تزريقات) و استنشاق، به منظور در امان ماندن از تخريب دارو توسط آنزيمهاي معده كه خوشبختانه در شش ها وجود ندارند؛ نانوكپسول ها براي پخش تدريجي دارو در بدن مورد استفاده قرار مي گيرند.
انرژي خورشيدي: پيلهاي خورشيدي با دوام‌تر و كاراتر با اميد كاهش واقعي قيمتها هم‌اكنون در حال پيشرفت هستند. برخي از اين پيلها حتي هيدروژن توليد خواهند كرد.
پيلهاي سوختي: شركتNEC اميدوار است كه اين پيلها را در سالهاي 2003 تا 2004 به بازار عرضه كند.
صفحات نمايش و صفحات الكترونيكي كاغذي: انتظار مي‌رود كه نمايشگرهاي صفحات الكترونيكي مبتني بر گسيل ميدان از نانولوله‌هاي كربني در دو سال آينده نمايشگرهاي كريستال مايع را كنار بزند.
نانولوله‌ها: نانولوله‌هاي چند جداره ـ نوع پست و ارزان ـ هم‌اكنون در حال ورود به كامپوزيتها هستند؛ البته نه به منظور بهبود خواص بلكه با هدف كاهش وزن اين تركيبات. نانولوله‌هاي تك جداره نيز در زمان طولاني‌تر اثر خيلي بزرگتري خواهند داشت.
كاتاليزور: كاتاليزور، كه افراد آنرا در صنعت با نام نانوتكنولوژي پير مي‌خوانند، بخصوص پس از پيشرفتهاي اخير كه در امر انرژي حاصل شده است، به شدت مورد توجه واقع شده است.
نانوكامپوزيتها: نانوكامپوزيتهايي اغلب بر پايه خاك رس براي كاربردهاي ساختاري با استحكام بالا يا خصوصيات تازه به صنايع خودرو و هوافضا راه يافته‌اند.
تكنولوژيهاي ذخيره‌سازي: حافظه مغناطيسي با قابليت دسترسي اتفاقي(RAM) و هارد ديسكهاي ترابايتي نانولوله‌اي در چند سال آينده وارد بازار خواهند شد.
مواد توده‌اي نانوكريستالي يا فولادهاي شامل نانوذرات: بعضي شركتها هم‌اكنون فولادهايي را كه نانوذرات كربن در طي مرحله رول كردن به آن افزوده شده است را مورد استفاده قرار مي‌دهند.
لايــــه نشاني‌: از سازندگان اتومبيل گرفته تا معمارها مشغول تحقيق بر روي لايه‌هاي خيــــلي محكم با خصـــوصيات ويژه‌اي مثل الكتروكـروميـك (رنگ‌پذيري الكتريكي) يا خود پاك‌كنندگي هستند.
حسگرها: مطالعات فراواني در زمينة حسگرهاي بيوشيميايي كه از نانوسيمها و نانولوله‌ها ساخته شده‌اند در حال انجام است.
آناليززيستي: ابزارهايي كه از ميكروسكوپهاي نيروي اتمي استفاده مي‌كنند و نقاط كوانتومي هم‌اكنون در حال آماده‌سازي براي عرضه به بازار هستند.
منسوجات: نانوفيبرها هم‌اكنون در پوشش‌هاي مقاوم در برابر گرما، قابل استفاده هستند. به زودي نانوفيبرهايي كه از طريق الكتريكي بافته شده‌اند و فيبرهايي كه با نانولوله‌ها بهبود يافته‌اند نيز به بازار ارائه خواهند شد. اين فقط نمونه‌اي از كاربردهاي فراوان و قابل حصول نانوتكنولوژي مي‌باشد.

محمد بهبهانی
09-13-2009, 01:17 AM
مقدمه
با پيشرفت علم و تکنولوژي در جهان، مرتباّ بر تعداد واژه‌هاي تخصصي افزوده مي‌شود. در اين ميان، گسترش علوم و تکنولوژي نانو و تعامل آن با بيوتکنولوژي، منجر به توليد و کاربرد واژه‌هايي چون بيونانوتکنولوژي و نانوبيوتکنولوژي در گفته‌ها و نوشته‌هاي محققان مختلف در سطح جهان شده است. آشنايي محققان و سياستگذاران علمي کشور با اين واژه‌ها، مي‌تواند آنها را در مطالعات و تصميم‌گيري‌ها ياري کند. در اين مطلب، سعي شده است با استفاده از منابع اينترنتي، مقالات و کتب موجود و همچنين استفاده از نظرات برخي متخصصين امر، تعاريف ساده‌اي از دو واژة بيونانوتکنولوژي و نانوبيوتکنولوژي ارايه شود.

مفهوم و زمينة کاربرد بيونانوتکنولوژي
تلفيق بيوتکنولوژي با فناوري نوظهور نانوتکنولوژي، مباحث جديدي را بين محققان، هم در سطح دانشگاهي و هم در حوزه صنعت به ‌وجود آورده است. نتيجة اين تلفيق، ظهور " بيونانوتکنولوژي " به‌عنوان يک زمينة تحقيقاتي بين‌رشته‌اي است که به ‌سرعت در حال رشد و توسعه است و با مقوله علم و مهندسي در سطح مولکول ارتباط دارد.

برخي از صاحب ‌نظران، بيونانوتکنولوژي را به‌عنوان زيرمجموعه‌اي از نانوتکنولوژي، به اين صورت تعريف کرده‌اند: " مطالعه و ايجاد ارتباط بين بيولوژي مولکولي ساختاري و نانوتکنولوژي مولکولي ". برخي ديگر، آن ‌را به‌عنوان زير مجموعه‌اي از بيوتکنولوژي بدين شکل تعريف کرده‌اند: " به‌کارگيري پتانسيل بالقوة بيولوژي در ساخت و سازماندهي ساختارهاي پيچيده با استفاده از مواد ساده و با دقت در حد اتم ". در اين زمينه، تنها تفاوتي که بين بيونانوتکنولوژي و بيوتکنولوژي وجود دارد اين است که طراحي و ساخت در مقياس نانو جزء لاينفک پروژه‌هاي بيونانوتکنولوژي است در حالي‌که در پروژه‌هاي بيوتکنولوژي، نيازي به فهم و طراحي در حد نانو نيست.

چنان‌که ملاحظه مي‌گردد، برخلاف تعريف " بيوتکنولوژي" که به معني فناوري استفاده از موجودات زنده و اجزاي موجودات زنده در راستاي نيازهاي صنايع مختلف است و همچنين برخلاف تعاريف واژه‌هايي چون "بيومتريال" و "بيومکانيک" که معمولا به‌معني استفاده از قابليت‌هاي فناوري‌هاي "مواد" و يا "مکانيک" در کاربردهاي زيستي است، در تعريف بيونانوتکنولوژي، هم کاربرد ابزارهاي بيولوژيکي به‌عنوان سازمان‌دهنده و ماده اوليه جهت ساخت محصولات و مواد نانويي، مورد توجه است و هم کاربرد محصولات توليدي تکنولوژي نانو، جهت مطالعة وقايع درون سلول‌هاي زنده و تشخيص و معالجة بيماري‌ها.

آنچه مسلم است ظهور اين زمينة تحقيقاتي، حاصل تغيير عقيدة بسياري از محققان در استفاده از راهکارهاي پايين به بالا ( Bottom-Up approach ) به جاي استفاده از راهکار بالا به پايين ( Top-Down approach ) جهت ساخت وسايل و مواد بسيار ريز است. در راهکارهاي بالا به پايين نانوتکنولوژي، سعي بر اين است که وسايل موجود مرتبا کوچکتر شوند؛ به اين راهکار، نانوتکنولوژي مکانيکي نيز گفته مي‌شود. اما در راهکار پايين به بالا، هدف ايجاد ساختارهاي ريز از طريق اتصال اتم‌ها و مولکول‌ها به‌يکديگر است؛ در اين راهکار از الگوهاي بيولوژيکي بهره ‌گيري مي‌شود.

محصولات و زمينه‌هاي فعاليت بيونانوتکنولوژي
برخي از محصولات و زمينه‌هاي فعاليت بيونانوتکنولوژي عبارتند از:

1- بيونانوماشين‌ها
مهمترين زمينة کاربرد بيونانوتکنولوژي، ساخت بيونانوماشين‌ها (ماشين‌هاي مولکولي با ابعادي در حد نانومتر) است. در يک باکتري هزاران بيونانوماشين مختلف وجود دارد. نمونه آنها، ريبوزوم‌ (دستگاه بسته ‌بندي پروتئين) است که محصولات نانومتري (پروتئين‌ها) را توليد مي‌کند. از خصوصيات خوب بيونانوماشين‌ها (به‌عنوان مثال حسگرهاي نوري يا آنتي‌بادي‌ها)، امکان هيبريدکردن آنها با وسايل سيليکوني با استفاده از فرآيند ميکروليتوگرافي است. به اين ترتيب با ايجاد پيوند بين دنياي نانويي بيونانوماشين و دنياي ماکروي کامپيوتر، امکان حسگري مستقيم و بررسي وقايع نانويي را مي‌توان به‌وجود آورد. نمونه کاربردي اين سيستم، ساخت شبکية مصنوعي با استفاده از پروتئين باکتريورودوپسين است.

2- مواد زيستي ( Biomaterial )
کاربرد ديگر بيونانوتکنولوژي، ساخت مواد زيستي مستحکم و زيست ‌تخريب‌پذير است. از جملة اين مواد مي‌توان به DNA و پروتئين‌ها اشاره نمود. موارد کاربرد اين مواد، به‌خصوص در زمينة پزشکي متعدد است. از ‌جمله موارد کاربرد اين مواد، استفاده از آنها به‌عنوان بلوک‌هاي سازنده نانومدارها و در نهايت ساخت وسايل نانويي ( Nano-Device ) است. همچنين به‌ دليل خصوصيات مناسب اين مواد از آنها در ترميم ضايعات پوستي استفاده مي‌شود.

3- موتورهاي بيومولکولي
موتورهاي بيومولکولي، موتورهاي محرکه سلول هستند که معمولا از دو يا چند پروتئين تشکيل شده‌اند و انرژي شيميايي (عموماً به شکل ATP ) را به حرکت (مکانيکي) تبديل مي‌کنند. از جمله اين موتورها، مي‌توان به پروتئين ميوزين (باعث حرکت فيلامنت‌ها مي‌شود)، پروتئين‌هاي درگير در تعمير DNA يا ويرايش RNA (به‌عنوان مثال، آنزيم‌هاي برشي) و ATPase اشاره کرد. از اين موتورها در ساخت نانوروبات‌ها و شبکة هادي‌ها و ترانزيستورهاي مولکولي (قابل استفاده در مدارهاي الکترونيکي) استفاده مي‌شود. از جمله زمينه‌هاي ديگري که از بيونانوتکنولوژي استفاده مي‌شود، مي‌توان به تکنولوژي دستکاري تک مولکول ( Single Molecule )، تکنولوژي Biochip و Drug Delivery ( ساخت نانوکپسول و نانوحفره)، تکنولوژي Microfluidics (به‌عنوان مثال، ساخت lab on a chip )، BioNEMS (ساخت پمپ‌ها، حسگرها و اهرم‌هاي نانويي)، Nucleic Acid Bioengineering (ساخت نانوسيم DNA و يا کاربرد در همسانه‌ سازي و ترانسفرميشن)، Nanobioprocessing (خودساماندهي، دستکاري سلولي و توليد فرآورده‌هاي زيستي)، حسگرهاي زيستي (ارزيابي ايمني غذا و محيط ‌زيست) و Bioselective surface (مورد استفاده در تکنولوژي‌هاي جداسازي زيستي)، اشاره نمود.

نانوبيوتکنولوژي و رابطة آن با بيونانوتکنولوژي
اما نانوبيوتکنولوژي نيز واژه ديگري است که در سال‌هاي اخير، محققان و صاحب‌نظران در کتب، مقالات و کنفرانس‌ها به‌ کار مي‌برند. طبق تعريف برخي از اين محققان، نانوبيوتکنولوژي، زيرمجموعه‌اي از نانوتکنولوژي است که در آن از ابزارها و فرآيندهاي نانويي و ميکروني براي ساخت و تهيه محصولاتي استفاده مي‌شود که در مطالعه سيستم‌هاي زنده استفاده مي‌شوند . برخي ديگر از محققان، نانوبيوتکنولوژي را زمينه‌اي از نانوتکنولوژي مي‌دانند که در آن از سيستم‌هاي بيولوژيکي موجود، همچون سلول، اجزاي سلولي، اسيدهاي نوکلئيک و پروتئين‌ها براي ايجاد ساختارهاي نانويي تلفيقي (مرکب از مواد آلي و معدني) استفاده مي‌شود.
اگر به مفهوم و هدف دو زيرشاخة نانوتکنولوژي يعني بيونانوتکنولوژي و نانوبيوتکنولوژي نگاه شود، مي‌توان فهميد که اهداف هر دو شاخه (يعني توليد محصولاتي که جهت مطالعة سيستم‌هاي زنده به ‌کار مي‌روند) و همچنين فرآيندها و مقياس فعاليت هر دو شاخه (يعني مقياس‌هاي در سطح نانو)، تقريبا يکسان است. بنابراين مي‌توان اين دو شاخه را به ‌صورت کلي با نام نانوبيوتکنولوژي ناميد. منتهي زماني که به‌طور صرف، از الگوها و مواد زيستي جهت ساخت وسايل در ابعاد نانو استفاده مي‌شود، بهتر است پيشوند "بيو" مقدم بر پيشوند "نانو" بيايد. در اين حالت، کاربرد واژه بيونانوتکنولوژي تخصصي‌تر از واژه نانوبيوتکنولوژي خواهد بود. مي‌توان بيونانوتکنولوژي را شکلي خاص از نانوبيوتکنولوژي دانست که مبناي آن، استفاده از موادزيستي (براي مثال پروتئين‌ها يا DNA ) جهت ساخت وسايل نانويي است؛ اما در هنگام استعمال واژة نانوبيوتکنولوژي، استفاده از ابزارهاي نانويي در کاربردهاي بيولوژيک نيز مورد نظر خواهد بود. بار ديگر تأکيد مي‌شود که کاربرد هر کدام از اين دو واژه، تا حد زيادي سليقه‌اي است و به زمينة تخصصي محققان مختلف، بستگي دارد

نتيجه‌گيري و چشم‌انداز
از مجموع مباحث فوق نتيجه گرفته شد که " بيونانوتکنولوژي " يک حوزة نوين ناشي از تلفيق علوم زيستي و مهندسي در حوزة نانو است که افق‌هاي جديدي را در زمينة ساخت و توسعة سيستم‌هاي تلفيقي به‌وجود آورده و محققان را اميدوار کرده‌است که بتوانند از اين تلفيق، در ساخت نانوساختارهايي استفاده کنند که در آنها از مولکول‌هاي بيولوژيکي به‌عنوان اجزاي سيستم مورد نظر استفاده شود؛ به‌عنوان مثال، از استراتژي‌ طراحي بيولوژيک (مثلاٌ، حالت زيپ ‌مانند مولکول دورشته‌اي DNA ) بتوانند در ساخت چارچوب‌هاي جداشدني و الگويي براي چينش ( Assembly ) پايين به بالاي (فرآيندي که طي آن، سازماندهي مولکولي، بدون دخالت نيروي خارجي صورت مي‌گيرد) مواد معمول‌تر، استفاده کنند. اين توانمندي نه ‌تنها در حل مسائل مهمي در علوم زيستي چون کاوش و شناسايي دقيق ساختار موجودات زنده کاربرد خواهد داشت، بلکه مي‌تواند محققان را در رفع چالش‌هاي عمده مهندسي همچون نياز به تکنيک‌هاي نوين جهت سنتز مواد و دستکاري آنها ياري دهد و به اين ترتيب دنياي نانو را به دنياي ماکرو وصل کند. به‌عبارت ديگر اين شاخة مهم علمي (يعني بيونانوتکنولوژي)، به زودي قابليت کاربرد در حوزه‌هاي مختلف غيرزيستي و حوزه‌هاي کاربردي ماکرو را خواهد داشت؛ کاربردهايي که هرچند در حوزه زيستي نيستند ولي الهام گرفته از فرآيندهاي زيستي ( Bio-inspired ) هستند.

محمد بهبهانی
09-13-2009, 01:17 AM
استفاده از علوم وفناوري هايي كه عواقب سوء برای محیط زیست ندارند، می تواند دستیابی به توسعه پایدار و مطمئن برای بشر امکان ¬پذیرسازد. یکی از روشهایی که اساسا ً ماهیتی حیاتی و طبیعی داشته و همراه با ساختار طبیعت و در جهت تعادل و همکاری با طبیعت مي باشد، روشهای بیوتکنولوژی است.
استفاده از میکرو ارگانیسم ها یا بیورمیدشن¬ها یکی از بهترین شیوه هایی جهت حذف ضایعات سنگین (نظیرتری کلرواتیلن و بیوفنیل های پلی کلرینه شده)، تصفیه بیولوژیکی فاضلاب، حذف فلزات سنگین از فاضلاب وتجزیه میکروبی نفت و مشتقات آن، در صنایع پتروشیمی می باشدکه در آمريكا و ژاپن به شدت مورد حمايت و توجه قرار مي گيرند. هرچند ماهيت آلاينده¬هاي محيط زيست به دليل تنوع آنها متفاوت است، به طور كلي مي توان آنها را به سه دسته تقسيم كرد:
الف- آلاينده ها يي كه به راحتي قابل تجزيه زيستي هستند نظيرضايعات و پس ما نده هاي خا نگي .
ب- آلاينده هايي كه به سختي تجزيه مي شوند، مانند تركيبات شيميايي صنعتي و برخي حشره كشها .
ج- آلاينده هايي كه مقاوم به تجزيه زيستی هستند مانند تركيبات پتروشيمي .
با توجه به تقسیم بندی فوق و قرارگرفتن ترکیبات پتروشیمی در دسته سوم لازم است جهت ریشه کنی آلودگی ها از روشها ي زیر استفاده نمود:
- استفاده ازتجزيه شيميايي تركيبات آلاينده به محصولات مناسب¬تر و قابل قبول تر.
- جذب و تغليظ مواد سمي خاص به موادي كه بتوانند با يك روش بي خطر دور ريخته شوند .
با توجه به مطالب فوق و اهمیت بکارگیری بیشتر این علم در صنعت پتروشیمی دراینجا به دوکاربرد مؤثر آن در صنایع پتروشیمی اشاره می شود:

گسترش فضای سبز صنایع پتروشیمی ایران توسط علم بیوتکنولوژی
به طوركلي تلفيق صنعت با فضا ي سبز، يكي ازا هداف ا صلي مجتمع ها مي باشد. طبق استانداردهاي زيست محيطي، بايد ده درصد ا ز فضاي صنعتي به فضاي سبز ا ختصاص داده شود، كه آبياري اين فضا ي سبز با ا ستفاده ازپسابها ي صنعتي صورت مي گيرد. احيا مراتع، جنگلها و حفظ تنوع گونه¬هاي گياهي و جانوري به خصوص در مناطق كويري، بياباني و همچنین شناسایی، تکثیر گونه¬های مقاومی نظیر کاکتوس ها، کاج و سرو که قابل رشد و پرورش در مناطق سخت و بیابانی است از ديگر موضوعاتي است كه با كمك روشهاي بيوتكنولوژي روند سريعتري می¬گیرد و مي توان بيشتر به آن توجه كرد. در حال حاظر پروژه های تحقیقاتی مهمی، به منظور پرورش گونه ها يي كه دا را ی ژنهاي مقاوم به نمک هستند، برای رشد در مناطق کویری، فعال مي باشند.

کاهش دادن ضایعات وآلودگی ها با استفاده از علم بیوتکنولوژی
خليج فارس ودرياي عمان، جزو متنوع ترين اكوسيستم هاي جهان هستند وشرايط خاص اين مناطق، از نظرتنوع ويژه رويشگاه¬هاي گرمسيري ،گونه هاي مختلف جانداران آبزي و غيره، حساسيت ويژه اي را براي اين محيط هاي آبي به وجود آورده است. احداث مجتمع هاي متعدد نفت ،گاز، پتروشيمي دركنار اين مناطق و پيامدهايي از قبيل ايجاد پسابهاي نفتي و شيميايي، جمع شدن مواد زائد، دفع زباله از مواردي است كه بايد بيشتر در مورد آن تحقيق و بررسي نمود . یکی ازروشهاي جديدي كه می توان در کاهش دادن اين معضل به كار گرفت، تبديل گل ولاي لجن درياچه ها ، دريا ها و سدها به كودهاي آلي با استفاده از روشهاي بيوتكنولوژي است. اين كار ضمن پاكسازي محيط زيست وجلوگيري از انباشته شدن آلودگي¬ها وضايعات در اكوسيستم¬هاي آبي، مواد و فرآورده هاي سودمندي را براي حاصلخيزي زمين¬هاي كشاورزي فراهم مي كند.

استفاده از تکنولوژی جديد درصنايع پتروشيمي
با مقایسه وضعیت آلایندگی صنایع كشورهای درحال توسعه نظیر صنایع پتروشیمی با كشورهای توسعه یافته می توان به این نتیجه رسید ارتباط مستقیمی بین عدم برخورداری ازفناوري هاي جديد وکارآمد با آ لودگی محیط زیست می باشد. همین مشکل باعث گردیده که مثلاً درصنعت پتروشیمی دریک فرآیند تولیدی، مواد اولیه به طور کامل مصرف نگردد و مواد تضییع شده به محیط دفع گردد وباعث آلوده شدن محیط اطراف خود شود.
زمانی كه یک استاندارد جدید برای از بین بردن آلودگیهای موجود محیط زیست وضع می شود، ، هزینه ونیروی انسانی زیادی را متوجه خود می سازد تا درصدی ازآلودگی ها راکاهش دهد، حال اگراین استاندارد با تکنولوژی جدیدی درصنعت بكار گرفته شود، علاوه برکاهش آلودگی، با راندمان بالای خود باعث افزایش تولید نیز می شود. بعضی کارشناسان بحث تقدم صرفه ا قتصادی را برحفظ محیط زیست مد نظر قرار می دهند اما بایدگفت که در مقایسه هزینه هایی که بدلیل به كارگیری تکنولوژی نا مناسب در مصرف مواد اولیه، انرژی و احیای محیط زیست هدرمی رود با هزینه هایی که باید پرداخت شود تا تکنولوژی جدید تهیه گردد، این نتیجه حاصل می گرددکه مورد دوم مناسب و با صرفه تراست.

محمد بهبهانی
09-13-2009, 01:22 AM
نانو نفت



http://diau.ir/forum/richedit/cliparts/Download/download.gif (http://www.diau.ir/upload/images/u3czbyjcofmplixdnof8.pdf)