وزارت انرژي آمريكا، برنامه هاي بسياري براي آينده توليد انرژي از نيروگاه هاي زغال سنگ سوز درنظرگرفته است. نيروگاه هاي پيشرفته آينده بازده بالاتر وآلايندگي بسيار كمتري خواهند داشت، آنقدر كم كه برخي آنها را نيروگاه هاي با «خروجي آلاينده نزديك به صفر مي دانند».
نيروگاه هاي آينده نه تنها با انواع كنوني تفاوت خواهند داشت كه ابزار طراحي آنها نيز بسيار متفاوت خواهند بود. براي كاهش هزينه وكوتاه كردن زمان اجراي طرح هاي نيروگاه هاي آينده، وزارت انرژي، مهندسي مجازي را به عنوان يك فناوري توانمند به كار مي گيرد. اين فناوري، مهندسان آينده را قادر خواهد ساخت كه ايده هاي بيشتري را كه تا پيش از اين با روش هاي سنتي مدت ها به طول مي انجاميد، سريع تر آزمايش كنند. نه تنها در زمينه ساخت نيروگاه هاي جديد كه دربسياري زمينه هاي ديگر مهندسي نيز، مي توان از اين فناوري سود جست.
طرح هاي جديد براي مجتمع هاي نيروگاهي مي بايد به طورسنتي در انواع مقياس ها ساخته مي شدند تا امكان آزمايش روي آنها فراهم مي شد. اين فرآيند نيازمند صرف هزينه و زمان بسياري است. اين روش، محدوديت هاي عملي و اجرايي فراروي ايده هاي خلاقانه و نوگرا مي گذارد. هدف سيستم مهندسي مجازي اين است كه به طراحان نسل بعد نيروگاه ها اجازه دهد فناوري هاي روز آمد را آزمايش كنند و توسعه دهند. نيروگاه هايي مانند نيروگاه هايي مانند نيروگاهاي هواپاك، شكاركننده كربن و نيروگاه هاي استخراج هيدروژن از زغال سنگ، پيش از اجرا مي توانند طراحي و آزمايش شوند. وزارت انرژي درنظر دارد با كاهش دوره طراحي و افزايش سرعت ساخت نيروگاه ها و به بهره برداري رساندن آنها، هرچه سريع تر نسل جديد نيروگاه ها را بسازد. اين سامانه را پژوهشگران آزمايشگاه مليAmes در دانشگاه ايالتي آيوا، دانشگاه كارنگي ملون و شركاي صنعتي پروژه از جملهReaction Engineering Int, Fluent Inc توليدكرده اند.
پژوهشگران در مركز كاربري حقيقت مجازي در دانشگاه آيوا مدل هاي محاسباتي را با مشاهده چشمي و ابزار مجازي با قابليت بر هم كنشي همراه مي سازند تا امكان تحقيق و اعمال تغييرات هم زمان روي طرح هاي پيشنهادي وجود داشته باشد. اين ابزار مهندسان را قادر مي سازد كه سامانه ها و اجزاي آنها را درفضاي مجازي طراحي كنند، تغييردهند و عيب يابي كنند، درست مانند هنگامي كه با اجزاي واقعي كار مي كنند. اجزاي جديدي در نيروگاه ها قرارداده خواهند شد و كارآيي آنها آزمايش خواهد شد، بدون اين كه به ساخت مدل هاي فيزيكي نياز باشد. اجزاي سامانه در زمان(real time) بدون اين كه نيازي به مدل سازي و آناليز دوباره مدل ها باشد، قابل اصلاح و بهينه سازي هستند.
طراح يكVisual Interface دراختيار خواهد داشت كه همانند يك نيروگاه حقيقي براي استفاده بهينه مهندسان ساخته شده و مزيت هايي به آن افزوده شده است. ابعاد نيروگاه مجازي مدل سازي شده را مي توان دراندازه هاي گوناگون تنظيم كرد. مهندس طراح قادر خواهد بود درنيروگاه مجازي قدم بزند، كاركرد آن را تماشا كند، به درون فيلترهاي تميزكننده گام بگذارد، يا بر تكه اي زغال سوار شود و مسير آن را درون نيروگاه بپيمايد.
اين ابزار زمان توليد را پايين مي آورند و طراحي مهندسي و كيفيت توليدات را بهبود مي بخشند. هسته دست يابي به اين مزيت ها افزودن شبيه سازي محاسباتي عددي با درنظرگرفتن تمام جزئيات Numerical Simulations و در دسترس بودن اجزاي طراحي شده در طرح مجازي است.
نرم افزار به گروه مهندسي اجازه مي دهد كه شكل، اندازه، شرايط كاري و ديگر ويژگي هاي تجهيزات موجود دريك نيروگاه را تغيير دهند و اثر اين تعميرات را برعملكرد نيروگاه را مشاهده و بررسي كنند. براي مثال، اگر مهندسي بخواهد ويژگي هاي عملكردي يك كوره زغال سنگ سوز را با تنظيم پارامترهاي نازل(قطر، زاويه، طول و...)تغيير دهد، مي تواند با اعمال اين تغييرات برنحوه تزريق دوغاب اكسيژن و زغال سنگ بدون كوره اثر بگذارد، آنگاه سامانه مهندسي مجازي تعيين خواهد كرد كه اين تغيير چه اثري بر تركيبات گازمصنوعي توليد شده درنيروگاه خواهد گذارد، درضمن محاسبه هم زمان بازده و هزينه نيز، شدني است. تقريباً تمام زاويه هاي شبيه سازي(Simulation) نيروگاه، به لحاظ طراحي، ساخت و يا نگهداري را پوشش مي دهد. شبيه سازهاي نفتي، فرآينديoff-line محسوب مي شوند و محاسبات و آناليز داده ها درآنها پيش تر انجام شده است. زمان تكرار هرآزمايش مجازي مي تواند از يك روز تا چند هفته به طول بينجامد. برپايه تصميم گيري مهندسي و نتايج شبيه سازي هاي پيشين، فرآيند آماده سازي يك نرم افزار شبيه سازي با اعمال تغييرات كوتاه مدت، زمان بسياري به درازا خواهد كشيد. سپس نتايج مدل هاي محاسباتي دراختيار ساير مهندسان،گروه طراحي و مديريت قرار مي گيرد. حتي اگر ابزارهاي آناليز سه بعدي به كار گرفته شوند، باز هم حضور گروه طراحي در فرآيند ناپيوسته خواهد بود، زيرا آنها تنها هنگامي مي توانند فعالانه درفرآيند طراحي شركت كنند كه نتايج محاسبات تكميل، بازبيني و تصحيح شده باشند.
به دليل اين كه اين فرآيند ذاتاً زمانبر است، محاسبات سيالاتي و انتقال حرارتي معمولاً نزديك به زمان پايان فرآيند طراحي استفاده مي شوند تا ديدگاه بهتري به طراحان بدهند، حال آن كه اين محاسبات خود مي توانند مبناي طرح هاي جديد قرار گيرند. به دليل اين كه تغييرات بنيادين به هنگام انجام فرآيند طراحي پرهزينه اند، تأثير مدل سازي تحليلي محاسباتي برجزئيات طرح نهايي اندك است؛ از اين رو روند سنتي، توان طراحي on-line را ندارد. طراحي برهم كنشي (Collaboratire) كه درآن مهندس، روند پويايي را براي طراحي درپيش مي گيرد، نيازمند كسب درك آني از عملكرد طبيعي كار نيروگاه است. روند قديمي همچنين اجازه كاوش درباره پرسش هاي مهندسان، طراحان و مديران را نمي دهد. اين شيوه كار تعداد راه حل هاي فراروي گروه هاي طراحي را محدود و خلاقيت در روند طراحي را ضعيف مي كند. پرسش هايي همچون «چه مي شد اگر» كه از اركان اساسي طراحي است، زياد پرسيده نمي شود.
مهندسي مجازي با آفريدن فضاي كاري مجازي و ارتقاي بسياري از فناوري هاي محاسباتي پيچيده همچون مهندسي و طراحي به كمك رايانه(CAD)، ديناميك تحليلي سيالات، آناليز المان محدود، محاسبات پرسرعت، كنترل فرآيند هوشمند، مديريت اطلاعات و تجهيزات واقعيت مجازي پيشرفته، راهي براي چيرگي بر مشکلات طراحي مي جويد. اين محيط کار مهندسي تمام فعاليت هاي نيروگاهي، نتايج تحليلي، مدل هاي اقتصادي و هر گونه اطلاعات کيفيتي و کميتي را که براي فرآيند طراحي مهندسي لازم است، در بر مي گيرد.
اين محدوده وسيع از اطلاعات و توانمندي ها، تمام متوليان را قادر مي سازد که به طور کامل و با فهم عميق تر و دقيق تر، تحليل ها و نتايج را بررسي و بيشترين بهره را از همين نتايج برداشت کنند و راهکارهاي مهندسي نوآورانه تري را به بوته آزمايش بگذارند.
تکنيک هاي مهندسي مجازي نيازمند گردآوري اطلاعات از منابعي گوناگون است که تمام مراحل تولد تا مرگ يک نيروگاه را بررسي مي كنند و از آن پس، قضاوت مهندسي و تجربه را با هم در مي آميزند تا اطلاعات خام را به دانشي کاربردي تبديل كنند. اطلاعات اگر به گونه اي مؤثر به بشر عرضه شوند، امکان تحليل الگوهاي پيچيده، ساخت فرصت هاي نو و آناليز فرآيندهاي جانشين را در اختيار او مي گذارند. با عجين ساختن برنامه هاي شبيه سازي، نقشه هاي با اندازه هاي دقيق و محصولات بينايي مجازي با دقت بالا مي توان بازرسي شبيه به بازرسي با حضور فيزيکي در محل را شبيه سازي کرد. در چنين محيطي، افرادي با رشته هاي تحصيلي متفاوت اما با هدفي مشترک، امکان همکاري دو جانبه دارند. اين همکاري منشأ فرصت هاي بي نظيري براي بهينه سازي طرح، رويارويي با موارد پيش بيني نشده و ارتقاي توانمندي حل مسائل خواهد بود.
براي همراه ساختن تمام اين بخش ها در يک محيط آشنا و طبيعي، نياز به نرم افزاري بسيار توانمند است. گروه پژوهشي مهندسي مجازي دانشگاه ايالتي آيوا، اين نرم افزار را ساخته است. ابزار مهندسي مجازي آن کيت VE-Suite است که از سه موتور نرم افزاري اصلي VE-Xplore، VE-CE و VE-Conductor تشکيل شده است که وظيفه انتقال داده ها از مهندسي طراح به اجزاي مجازي را برعهده دارند.
VE-CE وظيفه سينکرونيزه کردن داده ها در ميان تحليل هاي متفاوت، مدل هاي فرآيندها و موتور نرم افزار را برعهده دارد. VE-Xplore محيط تصميم گيري است و به مهندس طراح اجازه مي دهد که با مدل هاي تجهيزات در يک محيط مجازي کار کند. VE-Conductor سازكار کنترلي مهندسي براي کنترل مدل ها و ديگر اطلاعات خواهد بود. با يک استاندارد Open-Source، VE-Open به نرم افزار VE-Suite اين امکان داده مي شود که مهندس طراح و ديگر متوليان به تمام اطلاعات نيروگاه مجازي دسترسي داشته باشند. هدف اصلي از به کارگيري VE-Suite توانمند کردن کاربران براي به کارگيري اجزاي (نيروگاه) و مدل هاي گرافيکي دوبعدي و سه بعدي آنها براي طراحي قطعات و اجزاي جديد در نيروگاه است.
محاسباتي که مي بايد به دقت در طراحي نيروگاه ها به کار گرفته شوند، مربوط به جريان سيال، انتقال جرم، حرارت و واکنش هاي شيميايي اثرگذار بر عملکرد نيروگاه هستند؛ از اين رو مي توان اميدوار بود که نيروگاه هايي با خروجي گازهاي آلاينده نزديک به صفر، درآينده اي نزديک توليد شوند.